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Representations of Spacetime as Unitary Operation
Classes; or Against the Monoculture of Particle
Fields
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Spacetime is modeled as a homogeneous manifold given by the classes of unitary
U(2) operations in the general complex operations GL( C 2). The residual
representations of this noncompact symmetric space of rank two are characterized
by two continuous real invariants, one invariant interpreted as a particle mass
for a positive unitary subgroup and the second one for an indefinite unitary
subgroup related to nonparticle interpretable interaction ranges. Fields represent
nonlinear spacetime GL( C 2)/U(2) by their quantization and include necessarily
nonparticle contributions in the timelike part of their flat-space Feynman
propagator.

1. INTRODUCTION

1.1. Some Historical Remarks

Newton’ s interpretation of space and time as having an absolute ontology
(two unaffected boxes wherein the physical objects play around) was by far

more successful in the development of physical theories than Leibniz’ s opin-

ion, who considered time and position space as relations, as labels to express

their transformation properties. With Einstein the two boxes became one

spacetime box affected by and affecting the gravitational interaction.
Weyl(11) made the first attempt to unify Einstein’ s gravity with Maxwell’ s

electrodynamics by explaining the electromagnetic interactions as effected by

fields which connect and compatibilize spacetime-dependent transformations

from the noncompact Abelian dilatation group D(1) 5 exp R . This gauge

idea, used for the wrong patient, was made fruitful by switching over from
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the noncompact D(1) to the apparently right patient, the compact Abelian

transformation group U(1) 5 exp i R , a real Lie group defined in the complex.

Therewith a dichotomy between external spacetime transformations with the
Lorentz group O(1, 3) and internal unitary transformations comprising the

electromagnetic group U(1) was established. The internal transformation

group proliferated, the experimental and theoretical favorites being today the

compact standard model interaction gauge groups U(1), SU(2), and SU(3)

for hypercharge, isospin, and color, respectively.

General relativity and electrodynamics came originally in real formula-
tions, whereas quantum theory with its ª probability amplitudes,º characteristic

phase relations (transition elements), and U(1)-invariant scalar product was

born as a complex theory. The gauge approach ties the electromagnetic

interaction to the U(1) phases of complex matter fields. The complex represen-

tation of the internal compact real Lie group does not fit easily in a real

representation structure of the external transformations with the PoincareÂ

group, i.e., the vector spaces R 3 and R 4 for position space and spacetime

translations, respectively, acted on by the rotation and the Lorentz group,

O(3) and O(1, 3), respectively. But complex representations came rather

early also for the real spacetime transformations: The twofold split of a ray

with silver atoms in the original Stern±Gerlach experiment was the starting
point to replace the rotation group SO(3) with their real irreducible representa-

tion spaces, necessarily odd dimensional, e.g., real 3-dimensional position

space, by its twofold covering spin group SU(2). For the Lorentz group, this

entailed the transition to the complex represented real2 Lie group SL( C 2
R )

covering the orthochronous group SO+(1, 3). In a rather loose external±

internal ª unificationº both groups, the Lorentz SL( C 2
R ) and the electromag-

netic U(1) transformations, come together as subgroups of the full real 8-

dimensional group GL( C 2
R ) with a central correlation.(16) This group is repre-

sented directly by the transformations of charged spinor fields, e.g., of the

right-handed lepton isosinglet fields in the standard model of electroweak

and strong interactions. In contrast to such an external±internal unification

of the Lorentz group with the Abelian hypercharge U(1) in GL( C 2
R ) a unifica-

tion of the non-Abelian groups SU(2) and SU(3) for isospin and color with

SL( C 2
R ) remains an open problem.(17,18)

1.2. Equations of Motion?

The replacement of a finally oriented causality in Aristotelian physics
by time derivative equations of motions with initial conditions was, as a

2 The index R on the complex number C R 5 R % i R indicates its use as a complex represented
real structure. The complex 3-dimensional Lie group SL( C 2 and the real 6-dimensional one
SL( C 2

R ) are kept apart by thisÐ perhaps overcautiousÐ notation.
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method, the most important progress initiated by Newton. Subsequently,

equations of motion were derived from Hamiltonians and Lagrangians using

extremal principles. In the course of the last century Hamiltonians and Lagran-

gians were more and more motivated and constructed as invariants with

respect to transformation Lie groups and Lie algebras.

In quantum mechanics the operational structures of physics come into

full bloom (5): The equations of motion can be interpreted as the transforma-

tions with the Lie group exp t P D(1), modeling time, expressed via the

adjoint action (d/dt)a 5 [iH, a] with a Hermitian Hamiltonian H giving a

basis iH for the time translation Lie algebra3 log D(1) 5 R . The action of

time and its diagonalization is an algebraic eigenvalue problem [H, a] 5
E(a)aÐ an equation of motion is its differential formulation only, i.e., d/dt >
i ad H.

In the characteristic example of a quantum harmonic oscillator the time

action diagonalization gives integer energy eigenvalues. The involved repre-

sentation of time D(1) ® U(1) by a unitary group establishes the probability

structure since U(1) is the invariance group of a scalar product for the

complex representation space. Everything else, the definition of position and

momentum as real linear combinations of creation and annihilation operators,

which express the notion ª linear duality,º the construction of a Hilbert space

with normalizable wave functions, etc., are formulations for the basic U(1)-

representation structure of time adapted for the description of experiments

in the classical physics-oriented language.

The same procedure can be given explicitly, e.g., for the not so trivial

nonrelativistic hydrogen atom as done by Fock(4) using the rotation-perihel

invariance group of the Kepler dynamics, i.e., SO(4) > SU(2) 3 SU(2)/

{ 6 1} (compact, i.e., definite unitary) for bound states and SO+(1, 3) >
SL( C 2

R )/{ 6 1} (real, but indefinite unitary) for scattering states, to de-

termine the Hamiltonian as invariant and to give the definite U(1) and

indefinite U(1, 1) unitarity structure, respectively, of the time action

representations.

So far in quantum field theory, a replacement of the equations of motion,

e.g., in the standard model, by a purely algebraic transformation theory

with eigenvalues and eigenvectorsÐ as seems appropriate for a quantum

theoryÐ which can describe not only the scattering of particles, but also

derive, in a bound-state structure, their existence and their properties in terms

of eigenvalues, has not succeeded yet. In the following, I shall take some

steps along this route.

3 The Lie algebra for the Lie group G is denoted as log G.
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1.3. The Particle Prejudice

Relativistic quantum field theory is often praised as progress insofar as

interactions and particles are unifiedÐ all interactions are parametrizable by

particle fields. Even if such a viewpoint is qualified by extending the particle

language also to off-shell energy-momenta, i.e, for mass-m particles to energy-
momenta q with q2 Þ m2, it is simply not true. Apart from quarks and

gluons as strong interaction parametrizing fields postulated without particle

asymptotics (confinement), the most prominent example is the classical spin-

less Coulomb interaction which comes in the quantum electromagnetic

Lorentz vector field

A(x) 5 1 A0 1 A3 A1 2 iA2

A1 1 iA2 A0 2 A3 2 (x)

with four components. The SO+(1, 3)-Lorentz vector properties with maximal

Abelian subgroup SO(2) 3 SO+(1, 1) leads to a unitary U(2) 3 U(1, 1)

ª metric.º As seen in the harmonic analysis with energy-momentum-dependent

creation and annihilation operators, only the two transversal components,

related to a U(2)-scalar product, are particle interpretable as left and right

circularily polarized photons. From the remaining two components with indef-
inite U(1, 1)-sesquilinear form one component is related to the gauge degree

of freedom, and the last, fourth degree of freedom describes a quantum field

interaction without particle parametrization.(15)

An unreflected one-to-one correspondence of quantum fields with parti-

cles is similar and somewhat related to a superficial naive interpretation of

Lorentz transformations for spacetime translations

x 5 1 x0 1 x3 x1 2 ix2

x1 1 ix2 x0 2 x3 2
as blurring the difference between time and position space. Obviously, the

situation is more subtle. Also in special relativity, timelike and spacelike

translations det x 5 x2 . 0 and x2 , 0, respectively, are Lorentz operation

compatible conceptsÐ they are clearly distinct, but no longer linear subspaces.

The relativity of time translations R and position space translations R 3 can

be seen in the homogeneous nonlinear structure of the absolute concepts
ª timelikeº and ª spacelike.º With the fixgroups (ª little groupsº ) SO(3), SO(1,

2), and the semidirect SO(2)
-

3 R 2 for timelike, spacelike, and lightlike

translations, respectively, and the dilatation group D(1) 5 exp R one has the

nonlinear manifolds for the nontrivial spacetime translations
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timelike future (past): D(1) 3 SO+(1, 3)/SO(3) > GL( C 2
R )/U(2)

spacelike: D(1) 3 SO+(1, 3)/SO(1, 2) > GL( C 2
R )/U(1, 1)

lightlike future (past): SO+(1, 3)/SO(2)
-

3 R 2 > SL( C 2
R )/U(1)

-
3 C R

The properties of free particle fields are encoded in Feynman propaga-

tors,4 e.g., for a Hermitian scalar particle field F with mass m

^ { F , F }(x) 2 e (x0)[ F , F ](x) & 5
i

p # d 4g

(2 p )3

1

q2 1 io 2 m2 exiq

with the on-shell quantization causally supported, i.e., [ F , F ](x) 5 0 for

x2 , 0. If one uses a rest system in linear spacetime and, therewith, a basis
for time translations in an obviously not Lorentz-compatible decomposition

in time and position space, timelike translations (x0,
-

x ) with x2 . 0 have in

general also a nontrivial linear position space component
-

x . In relativistic

field theories, the position space dependence of nonrelativistic interactions

like the Yukawa or Coulomb interaction does not arise from spacelike transla-
tions, but from timelike ones x2 . 0, in the example above from the off-

shell causal contribution involving the principal value integration P:

e (x0)[ F , F ](x) 5 # a4q

(2 p )3 e (x0q0) d (m2 2 q2) exiq

5
1

j p # d 4q

(2 p )3

1

q2
P 2 m2 exiq

2 2i p # dx0 e (x0) [ F , F ] (x) 5
exp( 2 ) -

xm ) )
) -
x )

Only the on-shell Fock value of the quantization opposite commutator, in
the example above

^ { F , F }(x) & 5 # d 4q

(2 p )3 d (m2 2 q2)exiq

which is also spacelike supported, is relevant for the asymptotic particle

interpretation. The causally supported off-shell part e (x0)[ F , F ](x) in the

Feynman propagator is a particle-related contribution to a more complicated

spacetime representation structure, as will be elaborated in Section 3. I think

that relativistic quantum theory using particle-related fields only is incomplete
and unsatisfactory with respect to its causal spacetime representation content.

4 The translation compatible shorthand (anti)commutator notation [a, b] 6 (x 2 y) 5 [a( y), b(x)] 6
is used.
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Table I

Abelian Non-Abelian Eigenvalues, invariants

Compact U(1) U(2) Q
Noncompact GL( C R ) GL( C 2

R ) R
Homogeneous (noncompact) D(1) GL( C 2

R )/U(2) R

1.4. The Complication of Spacetime Theories

One may ask why an algebraization of spacetime theories is so difficult.
One reason may be that in the double dichotomy ª Abelian±non-Abelianº and

ª compact±noncompactº seen in parallel to the physical concepts, spacetime

operations are both non-Abelian and noncompact (Tables I and II).

The nondecomposable representations of compact, Abelian transforma-

tions are complex one-dimensional, of compact-Nonabelian transformations

complex finite-dimensional, both with rational eigenvalues(3,6)Ð as physical
properties called, e.g., winding, charge, or spin numbers. As for the non-

compact transformations, the irreducible representations in the Abelian case

are still complex one-dimensional, in the non-Abelian case in general infinite-

dimensional,(7,8) in both cases with a continuous spectrum Ð as physical prop-

erties called energies (frequencies), masses, or interaction ranges.
If we insist on the causality-compatible orthochronous Lorentz group

SO+(1,3) we have to face the representation complications of noncompact,

non-Abelian transformations.

2. SPACETIME AS TRANSFORMATIONS

In this section a model for spacetime is proposed with spacetime points

as classes of transformations.

2.1 A Mathematical Remark on ª Naturalnessº

In mathematics, there exist ª naturalº structures connected with the solu-
tion of ª universalº problems(2) which may be superficially characterized as

Table II

Abelian Non-Abelian Quantum numbers

Internal (compact) Eletromagnet ic Electroweak Winding, charge numbers,

spin, multiplicities

External (noncompact) Time Spacetime Frequencies, energies, masses,

interaction ranges
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follows: A given structure gives rise to new ones by considering its internal

relations, e.g., its self-transformations as binary relations.

Some well-known elementary examples: Each Abelian semigroup with
cancellation rule is naturally extendable to a unique group structure. This is

used for the extension of the natural numbers to the integer ones as binary

internal relations modulo an addition ( 1 )-induced equivalence 3 ,

Z 5
N 3 N

3
with (n1, n2) 3 (m1, m2) Û n1 1 m2 5 m1 1 m2

or for the extension of the integers as ring to the rationals as its unique field

structure with a multiplication ( ? )-induced equivalence j ,

Q 5
Z 3 [ Z \ {0}]

j
with (z1, z2) j (u1, u2) Û z1u2 5 u1z2

By considering Cauchy series as countably infinite relations, each metri-

cal space has its unique, naturally Cauchy completed space. This is used for

the extension of the rationals Q with their natural order-induced metric to

the reals R 5 Q N0 / ,
C

with a Cauchy series-induced equivalence ,C .

Another example is the natural structure of multilinearity: Each vector

space gives rise to a unique unital associative algebra structure, its tensor

algebra. Different quotient algebras can be related to the algebras used in
classical and quantum theories.(14)

2.2. Adjoint Transformation Structures

Some natural concepts involving binary internal relations are called

adjoint. They play a paramount role in physical theories, not only for gauge

fields. With respect to real and complex Lie transformation groups and

algebras (always finite-dimensional, if not stated explicitly otherwise) such
adjoint concepts describe the action of the transformations on themselves

and lead to characteristic doublings.

The adjoint doubling will be illustrated with the example of the real

three-dimensional position space whose translations, formalized by a vector

space R 3, with the action of a rotation group SO(3) constitute a Euclidean
semidirect product group

SO(3)
-

3 R 3 with product (O1,
-

x 1) + (O2,
-

x 2)

5 (O1O2,
-

x 1) 1 O2(
-

x 2))

SO(3)
-

3 R 3 is an example of an adjoint affine Lie group where, in

general, a Lie group G is represented in the automorphisms of the vector

space structure of its Lie algebra log G,
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G 3 log G ® log G, (g, x) j Int g(x) 5 g + x + g 2 1

Int g1 + Int g2 5 Int g1 g2

The adjoint group representation is faithful for the adjoint group Int G,

defined by the classes of the group elements with respect to the centrum,

i.e., the kernel of the group representation Int,

Int G
-

3 log G, Int G 5 G/ centr G

with product (g1, x1) + (g2, x2) 5 (g1 g2, x1 1 Int g1(x2))

The ª linear underliningº of the Lie algebra log G indicates that only its linear

vector space structure is relevant for this adjoint doubling; the Lie bracket
of the second factor has to be ª forgotten.º

The Euclidean group for position space, mentioned above, is the adjoint

affine group of the spin group SU(2),

SO(3)
-

3 R 3 5 Int SU(2)
-

3 log SU(2), centr SU(2) 5 { 6 12}

with product (u1, x1) + (u2, x2) 5 (u1u2, x1 1 u + x2 + u*)

Starting from the defining and fundamental complex two-dimensional
Pauli SU(2)-representation by u 5 exp i

-a -s with spin J 5 1/2, whichÐ up

to equiavalenceÐ gives all irreducible SU(2)-representations [2J ], J 5 0,

1/2 1, . . . , with dimension (1 1 2J ) by totally symmetrical tensor products,

one obtains the position space translations with the adjoint spin representa-

tion(2) as vector space structure of the spin Lie algebra, in a Leibnizian

interpretation as binary relations (traceless linear mappings) for Pauli spinors:

position space translations 5 log SU(2) > R 3

log SU(2) 5 H x: C 2
R ® C 2

R ) tr x 5 0, x 5 x* 5 -s -
x

5 1 x3 x1 2 ix2

x1 1 ix2 2 x3 2 J
The rotations are realized by the adjoint representation

u P SU(2): x j u + x + u* 5 O(u)(x)

The position space metric comes as a negative-definite Killing form, inherited

from the spin Lie algebra, i.e., the SU(2)-invariant double trace tr x + y, with

the quadratic form as the determinant x2 5 1/2 tr x + x 5 2 det x.
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For a Lie algebra L, the adjoint affine Lie algebra is defined by the

adjoint representation which realizes the Lie bracket by the commutator of

the endomorphisms of its vector space structure:

L 3 L ® L, (l, x) j ad l(x) 5 [l, x]

ad[l1, l2] 5 [ad l1, ad l2]

Only the adjoint Lie algebra ad L given by the classes of the Lie algebra
with respect to the centrum is faithfully represented. The adjoint affine Lie

algebra is as vector space the direct sum ad L % L and as Lie algebra the

semidirect bracket product, denoted by the direct sum±semidirect Lie bracket

symbol
-

% ,

ad L
-

% L 5 {l 1 x ) l, x P L}, ad L 5 L/centr L

with bracket [l1 1 x1, l2 1 x2] 5 [l1, l2] 1 ad l1(x2) 2 ad l2(x1)

The second factor L in this adjoint doubling is the vector space structure of

the Lie algebra.

For Euclidean position space, the adjoint affine Lie algebra for the
angular momenta log SO(3) is the Lie algebra of the Euclidean group

logSO(3)
-

% R 3 > logSU(2)
-

% log SU(2)

Both adjoint doublings, the adjoint affine group and the adjoint affine

Lie algebra, are related to the realization of a group G on itself by inner

automorphisms

G 3 G ® G, (g, a) j Int g(a) 5 gag 2 1

Int g1 + Int g2 5 Int g1 g2

leading to the adjoint group doubling as the semidirect product

Int G
-

3 G 5 {(g, a) ) g, a P G}

with product (g1, a1) + (g2, a2) 5 (g1 g2, a1 Int g(a2))

Each semidirect group G8
-

3 G is isomorphic to a subgroup of the adjoint

group doubling Int G
-

3 G, which is universal in this sense.
The adjoint doubling of the spin group is its semidirect product with

the rotation group

SO(3)
-

3 SU(2)

2.3. Spacetime and the Causal PoincareÂGroup

For a Lie group G with Lie algebra log G one has the three semidirect

adjoint doublings, reflecting two steps of infinitesimalization (Table III).
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Table III

Name Example

Int G
-

3 G Adjoint group doubling SO(3)
-

3 SU(2)

Int G
-

3 log G Adjoint affine group SO(3)
-

3 R 3

log Int G
-

% log G Adjoint affine Lie algebra log SO(3)
-

% R 3

They were discussed in the last section for the unitary spin group u* 5 u 2 1 P
SU(2) with the rotations SO(3) as adjoint group and the position space

translations R 3 as vector space structure of the spin Lie algebra log SU(2).

What about spacetime? The spacetime translations R 4 (Minkowski

space) with the orthochronous Lorentz group action constitute the semidirect

product PoincareÂgroup

SO+(1, 3)
-

3 R 4

The PoincareÂgroup is not the adjoint affine Lie group of the real six-

dimensional Lie group SL( C 2
R ):

Int SL( C 2
R )

-
3 log SL( C 2

R ) 5 SO+(1, 3)
-

3 R 6

Int SL( C 2
R ) 5 SL( C 2

R )/{ 6 12} > SO+(1, 3)

This real 12-dimensional group is relevant for the gauge structures in Minkow-

ski space where the curvature fields, e.g., the electromagnetic field strengths

{F jk 5 2 F kj}3
j,k 5 0 5 {

-
E ,

-
B }, represent the real six-dimensional vector space

structure of the Lorentz Lie algebra with the adjoint Lorentz group action.

At first sight it seems unnatural to relate the real four-dimensional

Minkowski translations R 4 to the real six-dimensional Lorentz Lie algebra

log SO+(1, 3) > log SL( C 2
R ). However, it is exactly the complex representa-

tion of the real covering group SL( C 2
R ) which makes this relation natural in

the mathematical sense. Only in this context can the PoincareÂgroup for flat

spacetime be understood as arising from an adjoint doubling, i.e., related to

internal relations of a transformation group.

In the case of complex represented real transformations there are two

kinds of adjoint structures. It may be helpful to give the construction first in

abstract terms: If a semigroup G has a reflection (conjugation), i.e., an

involutive contra-automorphism defined by

* : G ® G, g** 5 g, (gh)* 5 h*g*
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it defines its * -symmetric domain as the subset

D(G) 5 {d P G ) d* 5 d}

The concatenation of the inversion of a group G as canonical group reflection
with any reflection (conjugation) * is an involutive automorphism

Ã: G ® G, gÃ5 (g 2 1)* 5 (g*) 2 1

The invariants for this automorphism constitute the * -unitary subgroup

U(G) 5 {u P G ) u 2 1 5 u*}

For a group with conjugation both the symmetric domain D(G) and the

unitary subgroup U(G) can be used for adjoint structures.
Physically relevant examples used in the following are the full general

complex linear groups GL( C n
R ), considered as real Lie groups and definable

by the nonsingular complex n 3 n matrices with the Hermitian matrix conjuga-

tion * . They will be used for time in the case n 5 1 and for spacetime with

n 5 2. The group GL( C n
R ) has the real n2-dimensional submanifold D(n) as

its symmetric domain and the real n2-dimensional Lie subgroup U(n) as the
group with the invariants

D(n) 5 {d P GL( C n
R ) ) d* 5 d}, U(n) 5 {u P GL( C n

R ) ) u* 5 u 2 1}

The symmetric domain is a symmetric space(9) with the maximal compact

group as fixgroup. It is the direct product of the Abelian group D(1n) 5 1n

exp R and the globally symmetric space SD(n) 5 SL( C n
R )/SU(n),

D(n) > GL( C n
R )/U(n) > D(1n) 3 SL( C n

R )/SU(n)

Back to the general structure: A group G with two reflections, g % g*

(conjugation) and g % g 2 1 (inversion), gives rise to two types of adjoint
doublings. The inversion-induced inner automorphisms of the group G
described in the former section

G 3 G ® G, (g, a) j Int g(a) 5 gag 2 1 5 (gÃa*gÃ*)*

Int g1 + Int g2 5 Int g1g2, kern IntG 5 centr G

are, in general, not compatible with the conjugation. In addition and in

analogy to the inner automorphisms Int, the group G allows the conjugation-
compatible bijections, denoted by Int

*
:

G 3 G ® G, (g, a) j Int
*

g(a) 5 gag* 5 (ga*g*)*

Int
*

g1 + Int
*

g2 5 Int
*

g1 g2

Also these bijections constitute a realization of the group G with the kernel

defining the faithfully realized classes Int
*

G:
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kern Int
*

5 {h P G ) hgh* 5 h for all g P G}

Int
*

G 5 G/kern Int
*

For the unitary elements u P U(G) the bijections coincide with the inner

automorphisms, i.e., Int
*

u 5 Int u, not, however, in general. The analogous

structure to the adjoint group doubling Int G
-

3 G is given by the action of
the conjugation-compatible bijections on the symmetric domain D(G), which

will be called the adjoints symmetric transformaton space:

Int
*

G
-

3
*
D(G)

which, in general in contrast to Int G
-

3 G, is no semidirect product group.

The two types of adjoint doublings are illustrated for the physically

relevant examples GL( C n): One obtains for the complex case C with the

inversion and for the complex represented real one C R with the conjugation

inversion: Int GL( C n) 5 GL( C n)/GL( C ) 5 SL( C n)/ I (n)

conjugation: Int
*

GL( C n
R ) 5 GL( C n

R )/U(1n) 5 D(1n) 3 SL( C n
R )/ I (n)

with the cyclotomic group I (n) 5 {z P C ) zn 5 1} as SL( C n)-centrum. This

leads to the adjoint group doublings and the adjoint symmetric transforma-

tion spaces

n 5 1: H inversion: Int GL( C )
-

3 GL( C ) 5 GL( C )

conjugation: Int
*

GL( C R )
-

3
*

D(1) 5 D(1)
-

3
*
D(1)

n 5 2: H inversion: Int GL( C 2)
-

3 GL( C 2) 5 SL( C 2)/ I (2)
-

3 GL( C 2)

conjugation: Int
*

GL( C 2
R )

-
3

*
D(2) 5 [D(12) 3 SO+(1, 3)]

-
3

*
D(2)

For spacetime with n 5 2 the conjugate adjoint action involves the direct

product of the orthochronous Lorentz group and the dilatation group D(12),

called the causal group in this context.

Obviously for Lie symmetries the adjoint Lie group structures are linear-
izable with Lie algebra structures, first in general: For a Lie group G with

reflection (conjugation), the Lie algebra log G inherits the reflection (conjuga-

tion). Therefore, it is the direct sum of the * -antisymmetrical Lie subalgebra

l* 5 2 l as Lie algebra of the unitary Lie subgroup and the isomorphic * -

symmetrical vector subspace x 5 1 x* as tangent structure of the symmetric

manifold D(G) 5 G/U(G),

log G 5 log G 2 % log G+, H log G 2 5 log U(G)

log G+ > log G/logU(G)

In the example above one has in addition to the Lie algebra log U(n) as

U(n)-tangent space a real n2-dimensional vector subspace R (n) as tangent
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space of the symmetrical domain D(n) which, for n 5 2, will be used as

spacetime translations (Minkowski space)

log GL( C n
R ) 5 log U(n) % R (n)

R (n) > log GL( C n
R )/log U(n) > R n2

In addition to the adjoint affine Lie group Int G
-

3 log G involving the
inversion as natural reflection one has now also the conjugate adjoint represen-

tation of the group on its Lie algebra,

G 3 log G ® log G, (g, m) j Int
*
g(m) 5 g + m + g* 5 (g + m* + g*)*

Int
*
g1 + Int

*
g2 5 Int

*
g1g2

which, with the conjugation compatibility, can be restricted to the symmetrical

and antisymmetrical vector subspaces of log G. The conjugate adjoint affine
Lie group is defined with the symmetrical subspace as translations,

Int
*
G

-
3

*
log G+

With respect to the two adjoint doublings Int G
-

3 log G with inversion
and Int

*
G

-
3

*
log G+ with conjugation one obtains in the spacetime relevant

example (n 5 2) for the second case the PoincareÂgroup with an additional

causal group action:

n 5 1: H inversion: Int GL( C )
-

3 log GL( C ) 5 C

conjugation: Int
*
GL( C R )

-
3

*
R (1) 5 D(1)

-
3

*
R

n 5 2: H inversion: Int GL( C 2)
-

3 log GL( C 2) 5 SL( C 2)/ I (2)
-

3 C 4

conjugation: Int
*
GL( C 2

R )
-

3
*

R (2) 5 [D(12) 3 SO+(1, 3)]
-

3
*

R 4

All finite-dimensional irreducible complex SL( C 2
R )-representations

[2L ) 2R] with half-integers L, R 5 0, 1/2, 1, . . . and dimension (1 1 2L)(1 1
2R) can be builtÐ up to equivalenceÐ by the totally symmetrical tensor
products of the two fundamental Weyl representations, related to each other

by the conjugation-induced automorphism

left-handed [1 ) 0] by s 5 exp( 1
-

b 1 i
-a )

-s

right-handed [0 ) 1] by sÃ5 exp( 2
-

b 1 i
-a )

-s

The representations have the conjugation [2L ) 2R]* 5 [2R ) 2L]. The Hermitian

irreducible (1 1 2J )2-dimensional representations [2J ) 2J ] with J 5 0, 1/2,

1, . . . are generated by the complex four-dimensional Minkowski SL( C 2
R )-

representation [1 ) 1] 5 [1 ) 0] ^ [0 ) 1] with the linear binary relations for Weyl

spinors. The symmetric (real) subspace is the Cartan representation of the

spacetime translations by linear spinor mappings with the Weyl matrices

s k > (12,
-s )
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spacetime translations 5 log GL( C 2
R )+ 5 R (2) > log GL( C 2

R )/log U(2)

R (2) 5 H x: C 2
R ® C 2

R Z x 5 x* 5 s kx k 5 1 x0 1 x3 x1 2 ix2

x1 1 x2 x0 2 x3 2 J > R 4

They are acted on with the Lorentz and the causal group by the conjugate

adjoint representation

s P SL( C 2
R ): x j s + x + s* 5 L (s)(x)

d 5 d* P D(12): x j d + x + d* 5 D(d )(x)

The Lorentz metric comes as a product g 5 e ^ e 2 1 with the invariant spinor

metric, i.e., the antisymmetric bilinear C 2-volume form e 5 2 e T, leading to

the indefinite signature sign g 5 (1, 3).

2.4. Spacetime as Unitary Operation Classes

We summarize the salient structures of the last section which will be

used in the following. The conjugate adjoint operation structure for the group
GL( C n

R ) suggests the definition of nonlinear models for time and spacetime

as symmetric domains for complex linear transformations where the spacetime

points are the complex linear operations modulo the maximal compact unitary

operation group;

D(n) 5 GL( C n
R )/U(n)

time (n 5 1): D(1) 5 exp R

spacetime (n 5 2): D(2) > D(12) 3 SO+(1, 3)/SO(3)

Time comes as group, spacetime as homogeneous manifold. D(n) is the

orientation manifold(11) of scalar products in n dimension.(16)

The translations are the corresponding tangent structures:

R (n) 5 log GL( C n
R )/log U(n) > R n2

time translations (n 5 1): R (1) 5 R

spacetime translations (n 5 2): R (2) > R % log SO+(1, 3)/log SO(3)

As subsets of the complex (n 3 n)-matrices which constitute a stellar

algebra, time and spacetime carry the spectrum-induced order, i.e., the natural

order for time and the Minkowski partial order for spacetime:

x 5 x* 5 1 x0 1 x3 x1 2 ix2

x1 1 ix2 x0 2 x3 2 positive

Û spec x $ 0
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Û x2 5 det x $ 0, x0 5 1/2 tr x $ 0

Û x 5 q (x2) e (x0)x

The conjugate adjoint affine group is the semidirect causal PoincareÂ

group

[D(12) 3 SO+(1, 3)]
-

3
*

R (2)

Here in the conjugate adjoint doubling, the causal structure and the boost
structure arise twiceÐ globally as D(12) and SO+(1, 3)/SO(3) and in the

tangent space R (2) > R % R 3 as time and position space translations where

the decomposition is incompatible with the SO+(1, 3)-action.

3. REPRESENTATIONS OF SPACETIME

In analogy to Lie groups and algebras, also spacetime in the symmetric

space model D(2) 5 GL( C 2
R )/U(2) has linear representations. These represen-

tations will be constructed as residues in analogy to the representations of
time, modeled by the group D(1) 5 exp R , which is used in the quantization

of the basic quantum mechanical dual pair ª position-momentum.º

3.1. Quantum Representations of Time

A dynamics is a representation of time, expressed in quantum mechanics

by the noncommutativity of the generating operators. In the simplest cases

of a harmonic oscillator or of a free mass point one has the time-dependent
commutation relations of the dual position-momentum pair (x, p) which

generates the operator algebra

1 [ip,x] [x,x]

[p,p] [x, 2 ip] 2 (t) 5 5
D1 t

M Z m2 2 5 1 cos tm i/Mm sin tm

iMm sin tm costm 2
D1 t

M Z 0 2 5 1 1 it/M

0 1 2
oscillator mass M and frequency m free point mass M ) with the shorthand
notation [a(s), b(t)] 5 [a, b](t 2 s), valid for all matrix elements.

The time translations which generate the D(1)-representation are quan-

tum represented with the Hamiltonian, e.g., for the harmonic oscillator with

creation and annihilation operators (u, u*)

H 5
p2

2M
1

m2M

2
x2 5 m

{u, u*}

2
, u 5

Mmx 2 ip

! 2Mm

D(1) { et j [u*, u](t) 5 etim P U(1)
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The harmonic oscillator D(1)-representation by positions±momentum is

decomposable into two irreducible representations in U(1) { e 6 tim, dual to

each other with the SO(2)-metric (
1/Mm 0

0 Mm) built with the intrinsic oscillator

length l2 5 1/Mm,

D(1) { et j 1 cos tm i/Mm sin tm

iMm sin tm cos tm 2 > 1 e 1 tim 0

0 e 2 tim 2 P SO(2)

In contrast to the positive unitary time representations, not faithful for
the simply connected group D(1), the free mass point is a faithful and

reducible, but nondecomposab le complex D(1)-representation(1,13) in a non-

compact indefinite unitary group,

D(1) { et j 1 1 it/M

0 1 2 P U(1, 1)

For the general quantum mechanical case with the Hamiltonian iH 5
i[p2/2M 1 V(x)] as basis for the represented Lie algebra log D(1) > R one

obtains the time D(1)-representation by the ground-state values ^ [a(s), b(t)] & 5
^ [a, b] & (t 2 s) of the commutators with a spectral measure m (m2) for the time

translation eigenvalues m P R (frequencies, energies). In the case of a
compact time development, where there exists a basis of normalizable energy

eigenvectors (for the oscillator built by the monomials of creation and annihi-

lation operators, the D(1)-representation reads, with a positive-definite energy

measure m (m2) $ 0,

K 1 [ip, x] [x, x]

[p, p] [x, 2 ip] 2 L (t) 5 #
`

0

dm2 m (m2) 1 cos tm (i/Mm) sin tm

iMm sin tm cos tm 2
3.2. The Representation Defect of Particle Fields

Particle fields are appropriate to describe free particles, i.e., representa-

tions of the spacetime tangent structures leading to the particle characterization

by a causal translation property mass m Þ 0 or m 5 0 with a rotation

property SU(2)-spin and a U(1)-polarization, respectively.(12) What about

representations of the nonlinear global spacetime model

D(2) > D(12) 3 SO+(1, 3)/SO(3)

which contains the rotation classes of the Lorentz transformations in addition

to the causal group?

An appropriate example is a Dirac field C for a particle with nontrivial

mass m, e.g., for the electron±positron, with the quantization
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{ C , C }(x) 5 # d 4q

(2 p )3 e (q0)( g kqk 6 m) d (q2 2 m2)exiq

5 g 0 d (
-

x ) for x0 5 0

causally supported, i.e., { C , C }(x) 5 0 for x2 , 0.

The Dirac field is decomposable into left-and right-handed parts with

the Weyl matrices s k > (12,
-s ) > s Ï k,

C (x) 5 l(x) % r(x), C (x) 5 C *(x) g 0 5 r*(x) % l*(x)

The field quantization

g 0{ C , C }(x) 5 1 {l*, l} {r*, l}

{l*, r} {r*, r} 2 (x)

5 # d 4q

(2 p )3 e (q0)1 qk s Ï 0 s k m s Ï 0

m s 0 qk s 0 s Ï k 2 d (q2 2 m2)exiq

- k s Ï kl(x) 5 imr(x), - k s kr(x) 5 iml(x)

has to be compared with the energy spectral representation of the quantum

mechanical time representation for the harmonic oscillator,

1 [ip, x] [x, x]

[p, p] [x, 2 ip] 2 (t) 5 # dE e (E )1 E 1/M

Mm2 E 2 d (E 2 2 m2)etiE

5 1 cos tm (i/Mm) sin tm

iMm sin tm cos tm 2 5 12 for t 5 0

d

dt
x(t) 5

1

M
P(t),

d

dt
P(t) 5 2 Mm2x(t)

Particle fields give a causally supported position-space distribution of
a time group D(1)-representation as seen in the position space integral (time

projection) of the quantization condition for a Dirac particle field

# d 3x g 0{ C , C }(x) 5 # d 3x 1 {l*, l} {r*, l}

{l*, r} {r*, r} 2 (x)

5 # dE e (E )1 E12 m12

m12 E12 2 d (E 2 2 m2) ex0iE

5 1 cos x0m 12 i sin x0m 12

i sin x0m 12 cos x0m 12 2
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where the momentum and position space integrations have been interchanged.

For every time x0 the position space integration goes over a compact sphere

{
-

x ) -
x # x2

0}.
The integration with respect to the time translations displays the Yukawa

interaction and force,

2 p # dx0 e (x0) g 0{ C , C }(x)

5 2 p # dx0 e (x0)1 {l*, l} {r*, l}

{l*, r} {r*, r} 2 (x)

5 # dQ1 ) Q ) -s -
x / ) -

x ) im12

im12 2 ) Q ) -s -
x / ) -

x ) 2 q (Q2 2 m2) e 2 ) -
x Q )

5 1
1 1 ) -

xm )
) -
x )

-s -
x

) -
x ) im 12

im 12 2
1 1 ) -

xm )
) -
x )

-s -
x

) -
x ) 2 e 2 ) -

x m )

) -
x )

The rank 1 homogeneous boost manifold SO+(1, 3)/SO(3) contains as

maximal Abelian subgroup the Lorentz transformations SO+(1, 1) isomorphic
to a dilatation group D(1) with representations characterized by a mass

(inverse length) m

D(1) { ex j 1 cosh xm sinh xm

sinh xm cosh xm 2 > 1 e 1 xm 0

0 e 2 xm 2 P SO+(1, 1)

Particle fields involve representations only for the time group ex0 P
D(1), but not for the Abelian boost group e 6 ) -

x ) P SO+(1, 1) as seen in the
quantization of the left-handed Weyl field l(x):

1/2 tr # d 3x {l*, l}(x) 5 # dE e (E )E d (E 2 2 m2) ex0iE 5 cos x0m

p tr

-s -
x

) -
x ) # dx0 e (x0){l*, l}(x) 5 # dQ e (Q)Q q (Q2 2 m2) e 2 ) -

x Q )

5
1 1 ) -

x m )
-

x 2 e 2 ) -
x m )

e 2 ) -
x Q ) in the integrand is a matrix element for the representation of the boost

group SO+(1, 1) > D(1). The well-known Yukawa singularity structure
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1/ ) -
x ) , 1/

-
x 2 arising after integration with the spectral functions q (Q2 2 m2),

Q2 q (Q2 2 m2) for the tangent appropriate particle fields cannot occur in

SQ+(1, 1) representations. A quantum representation of the spacetime model
D(2) cannot be achieved alone by particle fields, genuine spacetime nonparti-

cle field contributions have to occur.

3.3. Residual Representations for U(1) and D(1)

The Lie algebra log U(n) > i R (n) and the spacetime translations R (n) are

unitarily diagonalizable with n Cartan coordinates in the polar decomposition:

R (n) > R n 3 SU(n)/U(1)n 2 1: H i a 5 u( a ) + i diag a + u( a )*

x 5 u(x) + diag x + u(x)*

For example,

n 5 2: i diag a 5 1 i( a 0 1 ) -a ) ) 0

0 i( a 0 2 ) -a ) ) 2 ,
diag x 5 1 x0 1 ) -

x ) 0

0 x0 2 ) -
x ) 2

leading to the Lie group and spacetime manifold as manifold products of a
maximal Albelian Cartan subgroup and a compact submanifold:

U(n) > U(1)n 3 SU(n)/U(1)n 2 1: ei a 5 u( a ) + ei diag a + u( a )*

D(n) > D(1)n 3 SU(n)/U(1)n 2 1: ex 5 u(x) + ediag x + u(x)*

Corresponding manifold products hold for the boost structure and the simple

Lie symmetry

SU(n) > U(1)n 2 1 3 SU(n)/U(1)n 2 1: tr a 5 0

SD(n) > D(1)n 2 1 3 SU(n)/U(1)n 2 1: tr x 5 0

The Cartan subsymmetry for the compact groups SU(n) and U(n) given

by U(1)-powers (tori) has its analogue in the D(1)-powers (planes) as non-

compact Cartan subsymmetry for the boost and causal symmetric spaces

SD(n) and D(n).
The unitary irreducible representations of the Abelian group GL( C R ) 5

D(1) 3 U(1), necessarily one-dimensional, have to be in U(1) since there is

only one unitarity type in GL( C R ). They must have an imaginary weight for

the noncompact group D(1) > R and an integer winding number for the

periodic phase group U(1) > R / Z ,
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D(1) 3 U(1) ® U(1) , GL( C R )

et 1 i a j et d 1 i a z Þ H d 5 2 d 5 im P i R
z P Z

which leads to the representation weights, identical with the invariants,

weights GL( C R ) 5 weights D(1) 3 weights U(1) 5 {(im, z)} 5 i R 3 Z

An irreducible representation of the complex group GL( C ) arises as a

residue of its eigenvalue as singularity by using the complex Lie algebra

forms Q P C ,

GL( C ) { eZ j eZ z 5
1

2i p R dQ
1

Q 2 z
eZQ, z P C

which gives for the unitary irreducible U(1) and D(1)-representations

U(1) { ei a j ei a z 5
1

2i p R dw
1

w 2 z
ei a w, z P Z

D(1) { et j etim 5
1

2i p R dq
1

q 2 m
etiq, im P i R

The integration for the noncompact and compact groups are related to each

other for the Lie algebras and their forms,

for GL( C ) (Z, Q), Z 5 t 1 i a , Q 5 q 1 iw

for D(1) (t, q) % (i a , iw) for U(1)

The nontrivial irreducible representations of U(1) and D(1) are not self-dual.

Measured representations use measures of the weights. The integer

weights for the compact group U(1) have as discrete complex measures series

of complex numbers leading to Fourier series:

meas Z { { m z}z P Z j rep U(1), m z P C

U(1) { ei a j o
z P Z

m se
i a z

The continuous weights for D(1) have Lebesque measure dm-based complex

measures giving rise to Fourier integrals,

meas R { m j rep D(1)

D(1) { et j # dm m (m)etim

The unitary irreducible representations of the simple group SL( C 2
R ) are

characterized by self-dual representations of a Cartan subgroup,
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GL( C R ) s 3 5 D(1) s 3 3 U(1) s 3 > SO+(1, 1) 3 SO(2)

which can go in the two types of two-dimensional unitary groups, the definite

unitary SU(2) or the indefinite unitary SU(1, 1):

SL( C 2
R ) . D(1) s 3 3 U(1) s 3 ® H U(1) s 3 , SU(2)

D(1) s 3 , SU(1, 1) J , SL( C 2
R )

e(x3 1 i a 3) s 3
® e(x3 d 3 1 i a 3z3) s 3

This defines the weights ( d 3, z3) of the principal and supplementary series

for SU(2) and SU(1, 1), respectively:

weights(2,0) SL( C 2
R ) 5 {(im3, z3)} 5 i R 3 Z 5 weights GL( C R )

weights(1, 1) SL( C 2
R ) 5 {(m3, 0)} 5 R

The principal series GL( C R ) s 3-weights coincide with the GL( C R )-
weights. One GL( C R ) s 3-representation is characterized by a dual pair { 6 im3}

for D(1) s 3 and { 6 z3} for U(1) s 3. The new real D(1) s 3-weights m3 P R in

contrast to the imaginary D(1)-weights im P i R above are possible for

dimensions n $ 2 with the possibility of indefinite unitary groups. One SO+

(1, 1)-representation in SU (1, 1) is characterized by a dual pair { 1 m3}. For
dimensions n $ 3 no additional types of invariants arise for the representations

of the Cartan subgroups U(1) and D(1). Altogether the unitary U(1) and

D(1)-representations are characterizable by the invariants

irrep U(1) % irrep SO(2) > {z} % {2J } 5 Z % N

irrep D(1) % irrep SO+(1, 1) > {im} % { 2 m2} 5 i R % R 2

Generalized functions have to be given taking care of the quadratic invariants
as complex plane singularities for self-dual residual representations.

Pairs of dual irreducible U(1)-representations {e 6 i a m ) m P Z } can be

formulated by measures with the integration prescription m2 6 io 5 ( ) m ) 6
io)2 for the invariant,

e 6 i ) a m ) 5 6
1

i p # dw
) m )

w2 7 io 2 m2 ei a w, m P R

If the Cartan subgroup U(1) comes in the special group SU(n), n $ 2, the

residual representation employs the forms of the R n2 2 1-dimensional tangent

Lie algebra with the singularity of the generalized functions determined by

the values of the invariant multilinear forms, starting for n 5 2 with the

bilinear Killing form
-

q 2 and a dipole
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for U(1) s 3 > SO(2): e 6 i ) -
a m ) 5 6

1

i p 2 # d 3w
) m )

(
-w 2 2 m2 7 io)2 ei

-
a

-
w , m P R

irrep SO(2) > { ) m ) 5 2J } 5 N

Pairs of dual irreducible D(1)-representations {e 6 xm ) m P R } are obtained

by (i a , iw) % (x, q), leading to the following Lie algebra form measure:

e 2 ) xm ) 5
1

p # dq
) m )

q2 1 m2 e 2 xiq, m P R

For a boost manifold SD(n), n $ 2, the D(1) s 3-representations use the

R n2 2 1-dimensional tangent space forms (momenta), again with a dipole for
n 5 2:

for D(1) s 3 > SO+(1, 1): e 2 ) -
x m ) 5

1

p 2 # d 3q
) m )

(
-

q 2 1 m2)2 e 2
-

x i
-

q , m P R

irrep SO+(1, 1) > { 2 m2} 5 R 2

3.4. Residual Representations for Spin SU(2)

The matrix elements of the irreducible SU(2)-representations [2J ] by

unitary C 2J 1 1-automorphisms can be given via measures of the Lie algebra

forms supported by integers.

With the generalized function singularities as angular momenta values,

SU(2) > SU(2)/U(1) 3 U(1) s 3

> SO(3)/SO(2) 3 SO(2)

[ 6 1](
-a ) 5

1

p 2 # d 3w

-
w

(
-

w 2 2 1 7 io)2 ei
-

a
-

w 5 i

-a

) -a ) e 6 i ) -
a )

there arise the matrix elements of the fundamental Pauli representation

ei
-

a
-

s 5 12 cos ) -a ) 1 i

-s -a

) -a ) sin ) -a )
Using the irreducible SO(3)-polynomi als [

-
w ]2J, homogeneous of degree

2J in the angular momenta

[
-

w ]0 5 1, [
-

w ]1 5 {
-

w a ) a 5 1, 2, 3}, [
-

w ]2 5 H wawb 2
d ab

3

-
w 2 J , . . .

the residual formulation for the matrix elements of the nontrivial irreducible
SU(2)-representation reads
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SU(2) { ei
-

a
-

s j [ 6 2J ](
-a )

5
1

p 2 # d 3w
[

-
w ]2J

(
-

w 2 2 4J2 7 io)2 1 J 2 c(J) ei
-

a
-

w , 2J 5 1, 2, . . .

The SU(2)-centrality (two-ality) 2c(J ) is trivial for integer J and 1 for half-

integer J

2c(J ) 5 H 0, 2J 5 0, 2, 4, . . .

1, 2J 5 1, 3, . . .

All representation elements of SU(2) can be obtained by derivations

with respect to the invariant m2 and the Lie parameter
-a from the Yukawa

potential for SU(2), defined in analogy to the usual Yukawa potential (next

section), which is no SU(2)-representation because of the Lie parameter
-a 5 0 singularity,

1

p 2 # d 3w
1

-
w 2 2 m2 7 io

ei
-

ga
-

w 5 2
e 6 i ) -

a m )

) -a ) , m P R ,
-a Þ 0

-
- m2 5

1

2 ) m )
-

- ) m ) ,
-

- -a
5

-a
-a

-
- ) -a

The m2 derivative leads to

1

p 2 # d 3w
1

(
-

w 2 2 m2 7 io)2 ei
-

a
-

w 5 6 i
e 6 i ) -

a m )

) m ) , m P R , m Þ 0

which gives the trivial representation [0](
-a ) 5 1 for an appropriate limit

m ® 0.

The representation matrix elements come in a product of a U(1) s 3-

representation factor with the invariant 2J (rotation frequency) multiplying

the modulus of the Lie parameter ) -a ) and a polynomial in the Lie parameter

direction
-a / ) -a ) (rotation axis), homogeneous of degree 2J, representing the

two-dimensional symmetric space (2-sphere) SU(2)/U(1) > SO(3)/SO(2),

[ 6 2J ](
-a ) , ) -a ) 1 2 2c(J) F i

-a

) -a G 2J

e 6 i2J ) -
a )

e.g., the adjoint representation

SO(3): [ 6 2](
-a ) 5

1

p 2 # d 3w
wawb 2 1±3 d ab

-
w 2

(
-

w 2 2 4 7 io)3 ei
-

a
-

w

5 2 ) -a )
4 1 a a a b

-a 2 2
d ab

3 2 e 6 2i ) -
a )

to be compared with the elements in the (3 3 3) matrix
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d ab cos 2 ) -a ) 1
a a a b

-a 2 (1 2 cos 2 ) -a ) ) 1 e abc
a c

) -a ) sin 2 ) -a )

A measured SU(2)-representation is a Fourier series as for U(1) where

each term comes with a unique SU(2)/U(1)-polynom ial,

meas Z { { m z}z P Z j rep SU(2), m z P C

SU(2) { ei
-

a
-

s j o
2J 5 0,1,...

( m 2J[2J ] 1 m 2 2J[ 2 2J ])

3.5. Residual Representations for Boost SD(2)

The unitary representations of the globally symmetric space

SL( C 2
R )/SU(2), called a boost manifold SD(2), will be defined via the polar

decomposition in a noncompact Cartan group D(1), in contrast to the compact

U(1) for SU(2), and a compact submanifold SU(2)/U(1), identical for SU(2)

and SD(2):

SD(2) 5 SL( C 2
R )/SU(2) > SU(2)/U(1) 3 D(1) s 3

> SO+(1, 3)/SO(3) > SO(3)/SO(2) 3 SO+(1, 1)

by using the tangent space relations

for SD(2) (
-

x ,
-

q ) % (i
-a , i

-
w ) for SU(2)

With the momentum measure singularities for the tangent space forms

at the representation invariant 2 m2 one obtains the fundamental SD(2)-

representations

[m2; 1](
-

x ) 5
1

p 2 # d 3q
i

-
q

(
-

q 2 1 m2)2 e 2
-

x i
-

q 5
-

x

) -
x ) e 2 ) -

x m ) , m P R

to be compared with

e
-

x ) m ) -
s 5 12 cosh ) -

x m ) 1
-s -
x

) -
x ) sinh ) -

xm )

and, in general, with the SO(3)-irreducible momentum polynomials [
-

q ]2J,

the irreducible SD(2)-representations

SD(2) { e
-

x
-

s j [m2; 2J ](
-

x )

5
1

p 2 # d 3q
[i

-
q ]2j

(
-

q 2 1 m2)2 1 j 2 c( j) e 2
-

x i
-

q , m P R , 2J 5 0, 1, 2, . . .

In contrast to the group SU(2), where the representations of the compact

factors U(1) s 3 and SU(2)/U(1) have to be related to each other by the invariant
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2J, in the symmetric space SL( C 2
R )/SU(2) the invariant m2 of the noncompact

Cartan group D(1) s 3-representation is not related to the degree 2J of the

homogenous polynomial for the representation of the compact sphere
SO(3)/SO(2).

All SD(2)-representations can be obtained by derivations - / - m2 and

- / - -
x from the Yukawa potential, which, by itself, is no SD(2)-representation

because of the
-

x 5 0 singularity:

1

p 2 # d 3q
1

-
q 2 1 m2 e 2

-
x i

-
q 5 2

e 2 ) -
x m )

) -
x ) , m P R ,

-
x Þ 0

The scalar representations

[m2; 0](
-

x ) 5
1

p 2 # d 3q
1

(
-

q 2 1 m2)2 e 2
-

x i
-

q 5
e 2 ) -

x m )

) m ) , m P R , m Þ 0

are trivial for the sphere SO(3)/SO(2). The analogue to the adjoint spin

representation reads

[m2; 2](
-

x ) 5
1

p 2 # d 3q
2 qaqb 1 1±3 d ab

-
q 2

(
-

q 2 1 m2)3 e 2
-

x i
-

q 5 ) -
x )
4 1 xaxb

-
x 2 2

d ab

3 2 e 2 ) -
x m )

All irreducible representations can be written as products

[m2; 2J ](
-

x ) , ) -
x ) 1 2 2c(J) F -

x

) -
x ) G 2J

e 2 ) -
x m )

A measured SD(2)-representation is a sum over the spin numbers 2J
with measures m 2J for the continuous invariants:

meas N 3 R + { { m 2J}2J P N j rep SD(2)

SD(2) { e
-

x
-

s j o
2J 5 0,1,... #

`

0

dm2 m 2J(m
2)[m2; 2J ](

-
x )

5 o
2J 5 0,1,... #

`

0

dm2 m 2J(m
2)

1

p 2 # d 3q
[i

-
q ]2J

(
-

q 2 1 m2)2 1 J 2 c(J) e 2
-

x i
-

q

The two integrations in measured representations go over the tangent
space forms * d 3q and the invariants * `

0 dm2 with the dimensions three and

one of the symmetric space and a Cartan subgroup, respectively. For the

measured SU(2)-representation in the previous section the one-dimensional

integration is replaced by a discrete sum.
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3.6. Two Continuous Invariants for Spacetime

Since Yukawa, the unification of a time development, characterized by

a particle mass ) m0 ) , with a position space interaction, characterized by a
range 1/ ) m3 ) , in one spacetime Klein±Gordon equation with one mass

1 d 2

dt2 1 m2
0 2 ei ) tm0 )

2i ) m0 ) 5 d (t)

1 2
- 2

- -
x 2 1 m2

3 2 e 2 ) -
x m3 )

4 p ) -
x ) 5 s (

-
x ) 6 Þ

( - 2 1 m2)G(x) 5 d (x)
with m2

0 5 m2
3 5 m2

seems to be an obvious relativistic bonus.

Particle fields with a Dirac energy-momentum measure in their

quantization

cj (x ) m0) 5 # d 4q

(2 p )3 e (q0)qj d (q2 2 m2
0)e

xiq

give by position space integration a Dirac measure for the time weights

iq0 P i R (real energies q0), self-dually supported at 6 im0, leading to SO(2)-
representation matrix elements of the Abelian time group D(1),

# d 3x cj (x ) m0) 5 d 0
j # d 1q e (q)q d (q2 2 m2

0) ex0iq 5 d 0
j cos x0m0

The appropriate measure for a representation of the boost subgroup

D(1) s 3 > SO+(1, 1) arises from a derived energy-momentum Dirac measure

cdip
j (x ) m3) 5 2

dc(x ) m3)

dm2
3

5 # d 4q

(2 p )3 e (q0)qjd 8(q2 2 m2
3)e

xiq

Time integration leads to a Dirac measure for the SO+(1, 1)-invariant and

an SO+(1, 1)-representation,

4 p
xa

) -
x ) d a

j # dx0 e (x0)c
dip
j (x ) m3) 5 2 # d 1q e (q)q d (q2 2 m2

3) e 2 ) -
x q ) 5 e 2 ) -

x m3 )

The appropriateness of the Dirac energy-momentum measure for time

in contrast to the derived measure for position space

1 2
- 2

- -
x 2 1 m2

3 2
2

e 2 ) -
x m3 )

3 p ) m3 ) 5 d (
-

x )

reflects the different dimensions, one and three, respectively, as seen also in

the energy-momentum Lebesque measure d 4q 5 dq0
-

q 2d ) -
q ) d w d cos u .
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The association of the singularities at m2
0 and m2

3 to representation invari-

ants for D(1) (time) and SO+(1, 1), respectively, is blurred since a tangent

space decomposition x 5 12x0 1 -s -
x into time and position space translations

is not compatible with the action of the Lorentz group SO+(1, 3). The Dirac

measure also has a nontrivial projection for the boost SO+(1, 1) and the

derived Dirac measure a nontrivial projection for time D(1):

4 p
xa

) -
x ) d a

j # dx0 e (x0)cj (x ) m0) 5 2
1 1 ) -

x m0 )
-

x 2 e 2 ) -
x m0 )

# d 3x cdip
j (x ) m3) 5 d 0

j
x0 sin x0m3

2m3

The D(1)-project ion of the derived Dirac measure leads to matrix elements

of reducible nondecomposable time representations.(13) The boost projection
of the Dirac measure leads to a Yukawa force which is not related to a matrix

element of an SO+(1, 1)-representation.

An ordered integration d 4q e (q0) with an energy-momentum Dirac mea-

sure coincides with an integration with an energy-momentum principal value,

P, pole measure as shown by the identities

# d 4q e (x0q0) d (N)(m2 2 q2)exiq

5
1

i p # d 4q
G (1 1 N )

(q2
P 2 m2)1 1 N exiq, N 5 0, 1, . . .

Related to two Cartan coordinates x0 6 ) -
x ) which reflect the real rank

2 of the noncompact homogeneous manifold D(2) 5 GL( C 2
R )/U(2), i.e., two

Abelian subgroups D(12) (time) and SO+(1, 1) as a subgroup of the boost
manifold SO+(1, 3)/SO(3), two invariants are appropriate as support for the

measures of the energy-momentum space with the action of the Lorentz group.

The unitary irreducible representations of the dilatation Lorentz group

GL( C 2
R )/U(12) > D(12) 3 SO+(1, 3)

with Cartan subgroup D(12) 3 SO+(1, 1) 3 SO(2) are characterized by two

invariants (masses) from a continuous spectrum for the noncompact group

D(12) 3 D(1) s 3 (time and boost) and one possibly trivial integer invariant

(winding number) for the compact polarization group U(1) s 3:

GL( C 2
R )/U(12) . D(12) 3 D(1) s 3 3 U(1) s 3 ® H U(2)

U(1, 1) J , GL( C 2
R )

ex012 1 (x3 1 i a 3) s 3
j ex0 d 012 1 (x3 d 3 1 i a 3z3) s 3

leading to the weights ( d 0, d 3, z3) for principal and supplementary series:
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weights(2,0)GL( C 2
R )/U(12) 5 {(im0, im3, z3)} 5 i R 3 i R 3 Z

weights(1,1)GL( C 2
R )/U(12) 5 {(im0, m3)} 5 i R 3 R

The weights (im0, m3) of the supplementary series with trivial SU(2)-represen-

tation are relevant for representations of spacetime D(2) as the unitary classes

D(12) 3 SL( C 2
R )/SU(2). Here m0 characterizes the positive unitary

representations D(1) { ex0 j ex0im0 P U(1) with a particle mass m0 and a

probability interpretation. m2
3 characterizes the indefinite unitary

representation SO+(1, 1) { e 2 ) -
x ) j e 2 ) -

x m3 ) P SU(1, 1) with an interaction
range 1/ ) m3 ) and without particle asymptotics. There is no group-theore tic

reason to identify both scales m2
0 5 m2

3Ð in general, the representations of

spacetime D(2) come with two different scales whose ratio m2
3 /m2

0 is a physi-

cally important representation-characteristic constant.

The ratio of the characterizing invariants should be seen in analogy to

the relative normalization of time and position space translations

1 l2/c2 0

0 2 l213 2
as given with the maximal action velocity (speed of light) c2.

3.7. Pole Measures of Energy-Momenta

To generalize the representations of the Abelian causal group D(1) as

residues for energy singularities to representations of the homogeneous causal

spacetime D(n) one starts from the matrix elements of nondecomposable

representations of a Cartan subgroup D(1)n with Cartan coordinates
{ j r}

n
r 5 1, given as products of residues:

D(1)n { 1 e j 1 . . . 0
. . .

0 . . . e j
n 2 j

(i j 1)
N1 . . . (i j n)

Nn

N1! . . . Nn!
e j 1im1 1 . . . 1 j nimn

5
1

(2i p )n R d nq
e j 1iq1 1 . . . 1 j niqn

(q1 2 m1)
1 1 N1 . . . (qn 2 mn)

1 1 Nn

Nr 5 0, . . . , Nr , r 5 1, . . . , n

with real invariants {mr}
n
r 5 1 (Cartan masses)and nildimensions {Nr}

n
r 5 1, trivial

for the irreducible representations.

If the group D(1)n comes as a Cartan subgroup in the spacetime mani-

fold D(n)

D(1)n , D(n) > D(1)n 3 SU(n)/U(1)n 2 1

one embeds in the Lebesque measure d n2
q of the energy-momenta
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d nq 5 d 1q1 . . . d 1qn on R n , d n2
q on R n2

invariant under SL( C n
R ). The quotient with the nth power of the SL( C n

R )-

invariant determinant (volume element)

d n2
q

(qn)n with qn 5 det q 5 5
q, n 5 1

det1 q0 1 q3 q1 1 iq2

q1 2 iq2 q0 2 q3 2 , n 5 2

is a GL( C n
R )-invariant measure.

The D(1)n eigenvalues are implemented as invariant singularities

d nq

(q1 2 m1) . . . (qn 2 mn)
, d n2

q

(qn 2 mn
1) . . . (qn 2 mn

n)

leading to the irreducible scalar pole measures of the energy-momenta for
GL( C n

R )

dn2
q

(qn 2 mn
1) . . . (qn 2 mn

n)
5 5

d 1q

q 2 m
, n 5 1

d 4q

(q2 2 m2
1)(q

2 2 m2
2)

, n 5 2

Their invariance group is the homogeneous group SL( C n
R )/ I (n), i.e., SO+(1, 3)

for n 5 2.

The compact manifold SU(n)/U(1)n 2 1 with 2(
n
2) coordinates can be non-

trivially represented by energy-momentum polynomials.

3.8. Residual Representations of Spacetime

Matrix elements of Lie group representations can be formulated as

residues for characterizing invariant singularities of their Lie algebra forms.

This will be done also for representations of the real rank 2 symmetric
spacetime D(2) using generalized functions of the noncompact R 4-isomorphic

energy-momenta q P R (2)T as linear forms of the D(2) tangent spacetime

translations. Two energy-momentum invariants q2 characterize the action of

the causal and boost subgroup of GL( C 2
R ).

Representations of spacetime

D(2) 5 GL( C 2
R )/U(2)

5 D(12) 3 SL( C 2
R )/SU(2) > D(12) 3 D(1) s 3 3 SU(2)/U(1)

> D(12) 3 SO+(1, 3)/SO(3) > D(12) 3 SO+(1, 1) 3 SO(3)/SO(2)
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will be built up by energy-momentum measures, compatible with the action

of the Lorentz group SO+(1, 3) on the tangent space. The GL( C 2
R )-invariant

measures of the energy-momenta d 4q/(q2)2 use the SL( C 2
R )-invariant 2-form

q2 in the denominator. The two invariant masses characterizing the representa-

tions of a noncompact Cartan subgroup representation GL( C 2
R ) . D(12) 3

SO+(1, 1) ® U(1) 3 SU(1, 1) are implemented via singularities d 4q/(q2 2
m2

0)(q
2 2 m2

3) in the irreducible spacetime representations

D(2) { ex j [m2
0, m2

3; 2J ](x) 5
1

p 3 # d 4q
[q]2J

(q2
P 2 m2

0)(q
2
P 2 m2

3)
1 1 J 1 c(J) exiq

m0,3 P R , 2J 5 0,1, . . .

The spin-related factor

[q]2J

(q2
P 2 m2

3)
J 1 c(J)

with the centrality 2c(J ) P {0, 1} describes the Lorentz-compatible embed-

ding of the sphere SO(3)/SO(2) representations via the irreducible energy-

momentum SO+(1, 3)-polynomials [q]2J, homogeneous of degree 2J:

[q]0 5 {1}, [q]1 5 {qj ) j 5 0, 1, 2, 3}, [q]2 5 H qjqk 2
qjk

4
q2 J , . . .

acted on by Lorentz group representations [2J ) 2J ]. For nontrivial J the repre-

sentations come with a multiple pole at m2
3. As shown below, the spacetime

representations depend on q (x2)x, which reflects the manifold isomorphy of

spacetime D(2) and the strictly positive cone {x P R 4 ) spec x . 0} in the
tangent Minkowski spacetime translations.

The measured spacetime representations

meas N 3 R 1 2 { { m 0
2J 3 m 3

2J}2J P N j rep D(2)

D(2) { ex j o
2J 5 0,1,... #

`

0

dm2
0 dm2

3 m 0
2J(m

2
0) m 3

2J(m
2
3)[m2

0, m2
3; 2J ](x)

involve a product measure for the continuous invariants (m2
0, m2

3) P R + 3 R +.
The D(2)-representations are different from the Lorentz-compatible posi-

tion space distributions of time representations used for the quantization of

tangent space particle fields (KaÈ llen±Lehmann representations(10)), e.g., for

2J 5 1
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particle fields: #
`

0

dm2 m (m2)
1

p 3 # d 4q
qj

q2
P 2 m2 exiq, m (m2) $ 0

with positive-definite probability-related spectral measure m (m2) for the

invariants of the time D(12)-representations in U(1).

The representations of rank 2 spacetime D(2) have to be seen as the
generalization of measured representations for the rank 1 Abelian time

group D(1)

D(1) { et j # dm m (m)etim 5 # dm m (m)
e (t)

i p # d 1q
1

qP 2 m
etiq

The irreducible unitary time D(1)-representations et j etim use a Dirac energy

measure with one supporting energy m. All matrix elements of the nondecom-
posable D(1)-representations are given by derivatives with respect to the

invariant,

D(1) { et j (ti)Netim 5
e (t)

i p # d 1q
G (1 1 N )

(qP 2 m)1 1 N etiq 5 1 d

dm) 2
N

etim

m P R , N 5 0, 1, . . .

The spacetime analogue is given by the nondecomposable D(2)-represen-

tation matrix elements with two supporting masses

D(2) { ex j
1

p 3 # d 4q
G (1 1 N0) G (1 1 N3)[q]2J

(q2
P 2 m2

0)
1 1 N0(q2

P 2 m2
3)

1 1 N3 1 J 1 c(J) exiq

m0,3 P R , 2J 5 0, 1, . . . , N0,3 5 0, 1, . . .

which arise from the scalar irreducible ones [m2
0, m2

3; 0] by derivations with

respect to the invariants d/dm2
0, d/dm2

0, andÐ for the SO(3)/SO(2) proper-

tiesÐ by derivations with respect to the spacetime variable d/dx.

3.9. Cartan Group Projection of Spacetime Representations

The projection of the spacetime representations to representations of

Cartan subgroups is given by time D(12)-projection via position space integra-
tion and boost SO+(1, 1)-projection via time integration:

e (x0)

8i p # d3x: rep D(2) ® rep D (12)

1

2 # dx0: rep D(2) ® rep SD(2)
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F -
x

) -
x ) G 2J

: rep SD(2) ® rep SO+(1, 1)

The time projection for the irreducible representations

e (x0)

8i p # d 3x [m2
0, m2

3; 2J ](x) 5
e (x0)

i p # d 1q
[q0]2J

(q2
P 2 m2

0)(q
2
P 2 m2

3)
1 1 J 1 c(J) ex0iq

can be computed with the SO(2)-representation matrix elements

e (x0)

i p # d 1q
1 q

m 2
q2

P 2 m2 ex0iq 5
1

i p R d 1q
1 q

m 2
q2 2 m2 ex0iq 5 1 cos x0m

i sin x0m 2
The energy-momentum polynomials are projected to energy polynomials

with
qi

j d 0
j q0

gjk
j d 0

j d 0
k

Þ 5
[q0]0 5 1

[q0]1 5 q

[q0]2 5
3

4
(q0)

2, . . .

The projection to representations of the boost manifold

1

2 # dx0 [m2
0, m2

3; 2J ](x) 5
1

p 2 # d 3q [q0]2J( 2 1)J 1 c(J)

(
-

q 2 1 m2
0)(

-
q 2 1 m2

3)
1 1 J 1 c(J) e 2

-
x i

-
q

is computed with the Yukawa potential

1

p 2 # d 3q
1

-
q 2 1 m2 e 2

-
x i

-
q 5 2

e 2 ) -
x m )

) -
x

,
-

x Þ 0

which by itself is no SD(2)-representation. The linear combinations occurring

in the SD(2)-project ion are measured SD(2)-representation with finite spectral

moments for the measures, e.g.,

2
e 2 ) -

x m0 ) 2 e 2 ) -
x m3 )

) -
x ) 5 #

m2
3

m2
0

dm2 e 2 ) -
x m )

) m ) 5 #
`

0

dm2 m 0(m
2)[m2; 0](

-
x )

m 0(m
2) 5 q (m2 2 m2

0) q (m2
3 2 m2

0), [m2; 0](
-

x ) 5
e 2 ) -

x m )

) m )

#
`

0

dm2 m 0(m
2) 5 m2

3 2 m2
0, . . .

The irreducible energy-momentum polynomials are projected to momentum

polynomials [
-

q ]2J, in general decomposable:
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with
qj j d q

j qa

qjk
j 2 d q

j d b
k d ab

Þ 5
[qa]0 5 1

[qa]1 5 qa

[qa]2 5 qaqb 2
d ab

4

-
q 2 5 [

-
q ]2 1

d ab

12

-
q 2[

-
q ]0, . . .

3.10. Scalar Spacetime Representations

The irreducible scalar spacetime representations are

D(2) { ex j [m2
0, m2

3; 0](x) 5
1

p 3 # d 4q
1

(q2
P 2 m2

0)(q
2
P 2 m2

3)
exiq

The decomposition in energy-momenta measures with one singularity

only

1

(q2 2 m2
0)(q

2 2 m2
3)

5
1

m2
0 2 m2

3 F 1

q2 2 m2
0

2
1

q2 2 m2
3 G

,
d (q2 2 m2

0) 2 d (q2 2 m2
3)

m2
0 2 m2

3

gives the representation matrix elements for the time subgroup

D(1) { ex0 j
e (x0)

8i p # d 3x [m2
0, m2

3; 0](x) 5
i

m2
0 2 m2

3 F sin x0m0

m0

2
sin x0m3

m3 G
The boost group SO+(1, 1) is represented with J 5 0,

SO+(1, 1) { e 2 ) -
x ) j 1

2 # dx0 [m2
0, m2

3; 0](x) 5 2 2
e 2 ) -

x m0 ) 2 e 2 ) -
x m3 )

) -
x ) (m2

0 2 m2
3)

The explicit form of the irreducible scalar spacetime representations

[m2
0, m2

3; 0](x) 5 q (x2)
m2

0 « 1(m
2
0 x2/4) 2 m2

3 « 1(m
2
3 x2/4)

m2
0 2 m2

3

with the special cases for equal and trivial masses

[m2, 0; 0](x 5 q (x2) « 1(m
2x2/4)

[m2, m2; 0](x) 5 q (x2) « 0(m
2x2/4)

[0, 0; 0](x) 5 q (x2)

contain the measured D(1)-representations with Bessel functions Jk:
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« k1 t 2

4 2 5
Jk( t )

( t /2)k 5 o
`

n 5 0

( 2 t 2/4)n

n1(n 1 k)1

5
1

! p G (k 1 1±2 ) # dE ! 1 2 E 22k 2 1
q (1 2 E 2)e t iE, k 5 0, 1, . . .

3.11. Fundamental Spacetime Representations

The irreducible fundamental spacetime representations belong to the

generating real four-dimensional SO+(1, 3)-representation [1 ) 1],

D(2) { ex j [m2
0, m2

3; 1](x) 5
1

p 3 # d 4q
q j s j

(q2
p 2 m2

0)(q
2
p 2 m2

3)
2 exiq

They involve a simple pole (particle singularity) and a dipole (interaction

singularity) reflecting the positive unitary and the indefinite unitary represen-

tation of a Cartan subgroup time D(1) and boost SO+(1, 1), respectively.
The decomposition into energy-momenta measures with one singular-

ity only

1

(q2 2 m2
0)(q

2 2 m2
3)

2 5
1

(m2
0 2 m2

3)
2 F 1

q2 2 m2
0

2
1

q2 2 m2
3 G

2
1

(m2
0 2 m2

3)

1

(q2 2 m2
3)

2

,
d (q2 2 m2

0) 2 d (q2 2 m2
3)

(m2
0 2 m2

3)
2 1

d 8(q2 2 m2
3)

m2
0 2 m2

3

gives the representation matrix elements for the time subgroup

D(1) { ex0 j 2
e (x0)

16 p
tr # d 3x [m2

0, m2
3; 1](x)

5
cos x0m0 2 cos x0m3

(m2
0 2 m2

3)
2 1

x0m3 sin x0m3

2m2
3(m

2
0 2 m2

3)

and those for the boost subgroup

SO+(1, 1) { e 2 ) x ) j 1

4i
tr

-s -
x

) -
x ) # dx0 [m2

0, m2
3; 1](x)

5 2
(1 1 ) -

x m0 ) )e 2 ) -
x m0 ) 2 (1 1 ) -

x m3 ) )e 2 ) -
x m3 )

-
x 2(m2

0 2 m2
3)

2 1
e 2 ) -

x m3 )

m2
0 2 m2

3

The integrated form of the spacetime representation
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[m2
0, m2

3; 1](x)

5 i q (x2) x
m4

0 e 2(x
2m2/4) 2 m4

3 e 2(x
2m2

3 /4) 2 (m2
0 2 m2

3)m
2
3 « 1(x

2m2/4)

2(m2
0 2 m2

3)
2

has the following special cases for equal and trivial masses

[m2, 0; 1](x) 5 i q (x2)x
« 2(m

2x2/4)

2

[0, m2, 1](x) 5 i q (x2)x
« 1(m

2x2/4) 2 « 2(m
2x2/4)

2

[m2, m2; 1](x) 5 i q (x2)x
« 0(m

2x2/4)

4

[0, 0; 1](x) 5 i q (x2)x 1±4

3.12. Spacetime Quantum Fields

Spacetime representations arise as field quantizations. In analogy to the

time-dependent position x(t) quantized by a time D(1)-representation matrix

element, e.g., for the harmonic oscillator

[m2](t) 5
1

p # d 1q
1

q2
p 2 m2 etiq 5 2 e (t)

sin tm

m
5 i e (t)[x, x](t)

the D(2)-spacetime residual representations are quantizations of spacetime

fields, e.g., for the scalar and fundamental representations as commutator

and anticommutator of a scalar and spinor field, respectively:

[m2
0, m2

3; 0](x) 5
1

p 3 # d 4q
1

(q2
p 2 m2

0)(q
2
p 2 m2

3)
exiq

5 i e (x0)[ F , F ](x)

[m2
0, m2

3; 1](x) 5
1

p 3 # d 4q
q j s j

(q2
p 2 m2

0)(q
2
p 2 m2

3)
2 exiq

5 i e (x0){ C *, C } (x)

In contrast to time and because of the additional indefinite SO+(1, 1)

boost structure such spacetime fields cannot be interpreted in terms of positive
metric particles only. Supplementing the residual spacetime representation

which can be taken as a causally supported quantization in flat tangent

spacetime by an Fock state value for the quantization opposite commutator,

also spacelike supported,
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^ { F , F }(x) 2 e (x0)[ F , F ](x) &

5
i

p 3 # d 4q
1

(q2 1 io 2 m2
0)(q

2
p 2 m2

3)
exiq, m2

0 . m2
3

^ [ C *, C ](x) 2 e (x0){ C *, C }(x) &

5
i

p 3 # d 4q
qj s j

(q2
p 1 io 2 m2

0)(q
2
p 2 m2

3)
2 exiq

only the m2
0-singularity with a positive residue allows a particle interpretation

and therefore an additional on-shell spacelike contribution as included with

the integration prescription 1 io.

Starting from a frequency m for the creation operator u of a harmonic
oscillator, the freqencies nm for the powers un with natural n arise as singulari-

ties by convolutions of the basic representations etim in the residual representa-

tion. Similarly, a fundamental spacetime representation [m2
0, m2

3, 1], may give

rise to product representations whose positive metric singularities have a

particle interpretation. To this end the convolution, appropriate for the Abelian

time group D(1) 5 GL( C R )/U(1), has to be generalized to a ª convolutionº
for the non-Abelian spacetime symmetric space D(2) 5 GL( C 2

R )/U(2).

As another genuine spacetime feature the class property of the spacetime

elements with the fixgroup U(2) has to be taken into account,

GL( C 2
R ) > GL( C 2

R )/U(2) 3 U(2) 5 D(2) 3 U(2)

This noncompact-compact factorization can be connected with the external-
internal dichotomy.(18)
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